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The proliferation of artificial intelligence has enabled a diversity of applications that bridge the gap 

between digital and physical worlds. As physical environments are too complex to model through a 

single information acquisition approach, it is crucial to fuse multimodal data generated by different 

sources, such as sensors, devices, systems, and people, to solve a problem in the real world. 

Unfortunately, it is neither applicable nor sustainable to deploy new resources to collect original data 

from scratch for every problem. Thus, when data is inadequate in the domain of problem, it is vital 

to fuse knowledge from multimodal data that is already available in other domains. We call this cross-

domain knowledge fusion. Existing research focus on fusing multimodal data in a single domain, 

supposing the knowledge from different datasets is intrinsically aligned; however, this assumption 

may not hold in the scenarios of cross-domain knowledge fusion. In this paper, we formally define 

the cross-domain multimodal data fusion problem, discussing its unique challenges, differences and 

advantages beyond data fusion in a single domain. We propose a four-layer framework, consisting 

of Domains, Links, Models and Data layers, answering three key questions: “what to fuse”, “why 

can be fused”, and “how to fuse”. The Domains Layer selects relevant data from different domains 

for a given problem. The Links Layer reveals the philosophy of knowledge alignment beyond specific 

model structures. The Models Layer provides two knowledge fusion paradigms based on the 

fundamental mechanisms for processing data. The Data Layer turns data of different structures, 

resolutions, scales and distributions into a consistent representation that can be fed into an AI model. 

With this framework, we can design solutions that fuse cross-domain multimodal data effectively for 

solving real-world problems.  
 

H.2.8 [Database Management]: Database Applications - data mining, spatial databases and GIS; I.2.6 

[Artificial Intelligence]: Learning - Knowledge acquisition 

General Terms: Algorithms, Measurement, Experimentation 

Additional Key Words and Phrases: Knowledge fusion, data fusion, multimodal data, cross-domain, data 
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1. INTRODUCTION  

The advances in sensing technology, large-scale computing infrastructures and artificial 

intelligence have fostered a variety of applications that solve real-world problems through  
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interactions with both virtual and physical worlds. As the natural processes and physical 

environment are very complex, it is rare that a single information acquisition method 

provides complete understanding of a phenomenon of interest [22]. Thus, a diversity of 

data obtained from different perspectives and sources using different types of instruments 

and measurement techniques (a.k.a. multimodal data) are used together to solve a problem 

[65][67]. Extensive studies have shown that fusing multimodal data achieves a better 

performance than using a single dataset in many tasks [1][15][32][40][63]. 

Recently, the big progress made in large language models [48][47][18] and embodied 

AI[26][30][52] has improved the capability of multimodal data fusion to some extent, 

attracting an even broader range of attentions to this topic from a diversity of communities 

[60][64]. For example, AI models can generate images or video clips based on text 

descriptions [8][39], or integrate videos, audios and text as an input to better understand 

human expression [44][47]. In these scenarios, we need to transfer the knowledge from one 

modality of data to another (i.e. cross-modalities) or complement knowledge from multiple 

data modalities to achieve a common goal (i.e. multi-modalities), such as understanding a 

phenomenon of interest or solving a problem.  

However, most existing techniques only fuse multimodal data from a single domain 

mainly for solving problems in the digital world.  

1) Single Domain vs Multiple Domains: For instance, as depicted in Figure 1 A), 

images, texts and videos from the same webpage would be fused to obtain a deeper 

understanding of a tourist attraction. Alternative, as shown in Figure 1 B), texts are used 

as an input to generate an image which will be gradually updated given more descriptions 

in texts. As illustrated in Figure 1 C), data generated by visual, audial and pressure sensors 

installed in a robot could be aggregated to better model the physical environment around 

the robot. In a brain study, as depicted in Figure 1 D), we would install multiple electric 

and magnetic sensors on different parts of a head mount device to capture signals of brains. 

In these scenarios, though multiple datasets of different modalities are fed into an AI model, 

they are originally created for the same purpose, e.g. describing the same location, 

modeling the same environment, and sensing the same head, in a single and specific 

domain, such as a webpage, an interface of a system, a robot, or a brain device. That is, the 

knowledge those datasets contain is intrinsically aligned at the very beginning of a task. 

 

 
Figure 1 Examples of data fusion in a single domain 

In the real world, however, there are more application scenarios in which we need to 

fuse multimodal data from different domains for many reasons, such as a limited budget, 

space constraints or time cost [67][68][69]. It is neither applicable nor sustainable to deploy 

new resources, including sensors, devices, instruments and labors, to collect original data 
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from scratch for every task. Thus, to complete a task in a domain, as illustrated in Figure 

2, we need to leverage additional datasets generated in other domains when the necessary 

data is insufficient in the domain of task. For example, in the domain of environment 

protection (denoted as Domain 𝒜 in Figure 2), there is a problem of air pollution which 

would damage people’s health. To solve this problem, we may design a few tasks, such as 

inferring the real-time and fine-grain air quality throughout an entire city (𝑇1) and then 

forecasting the air quality over the next 48 hours (𝑇2). To complete task 𝑇1, we need to 

harness a diversity of datasets relating to traffic, land uses, and meteorology besides air 

quality data. This is a task about environmental protection (belonging to Domain 𝒜), while 

the datasets fed into an AI model are obtained from multiple domains, including 

transportations, urban planning and climate (i.e. Domain ℬ, 𝒞, and 𝒟). As those datasets 

were not originally collected for inferring air quality, the knowledge from them is not 

naturally aligned. 

 
Figure 2. Illustration of cross-domain knowledge fusion 

2) Problems in Digital World vs in Physical World: There are three scenarios of 

problem solving in which we fuse multimodal data, as illustrated in Figure 3. Most research 

has been done in the first scenario and a few are stepping into the second one. However, 

the last one is very rare, which is the main target of this paper, though our framework is 

applicable to all these three scenarios. 

The first one fuses multimodal data obtained from the digital world in a task that is 

designed to solve problems also in the digital world, as depicted in Figure 3 A). For 

example, generating a video clip using an AI model based on text descriptions for 

demonstrating an idea.  

The second one fuses multimodal data from both digital and physical worlds in a task 

for solving a problem in the digital world, as shown in Figure 3 B). For instance, integrating 

data obtained from handle or infrared light sensors deployed in the physical world for 

playing a Wii or Kinect video game in the digital world.  

The third one fuses multimodal data from both worlds in a task running in digital world 

but for solving a problem in the physical world, as illustrated in Figure 3 C). For example, 

combing weather conditions, traffic data and social media to adjust traffic control policies 

in a city’s downtown. As the cost of data collection in the physical world is much higher 

than in the digital world, it is not easy to have abundant data in every application scenario. 

In many cases, data scarcity and data missing problems are even more difficult to solve 

than handling data diversities. Under such a circumstance, combining domain knowledge 

with data becomes more important for solving a real problem.  
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Figure 3 Three problem solving scenarios when fusing multimodal data 

The above-mentioned two differences (single vs multiple domains, virtual vs physical 

worlds) pose new challenges to data fusion, including knowledge alignment across 

disparate data from different domains and handling data insufficiency in each dataset 

during fusion. As a result, we need to answer the following three questions before placing 

data into a model’s structure.  

1) What kind of datasets can be selected from other domains? i.e. what to fuse? 

2) Why can these datasets be fused together to achieve a better performance? i.e. the 

underlying links between those datasets. In short, why can be fused? 

3) How to design a specific model structure to fuse the knowledge from selected data? 

i.e. how to fuse? 

In task 𝑇1, the selection of data depends on domain knowledge from 𝒜, ℬ, 𝒞, and 𝒟 

and the insights into data, as shown in the bottom part of Figure 2. Regarding the second 

question, the links between data are derived from both domain knowledge and the 

philosophy of knowledge alignment. The answer to the third question depends on the link 

between datasets, the nature of data modalities and AI expertise. Based on the designed 

AI model, we can fuse the knowledge from these datasets to complete task 𝑇1, and then 

solve the problem gradually.  

In this paper, we formally define the cross-domain multimodal data fusion problem, 

exploiting its differences, challenges and advantages beyond data fusion in a single domain. 

This is a new and vital research theme for solving real-world problems. To answer the 

“what”, “why” and “how” questions mentioned above, we propose a four-layer framework, 

consisting of the Domains, Links, Models and Data layers. The contributions of this article 

are four folds.  

• In the Domain Layer, we propose a methodology to select relevant data from different 

domains for a given problem, through a procedure: problems → root causes→ 

factors→data→sources and domains, i.e. answering the question of what. 

• In the Links Layer, we reveal the philosophy of knowledge alignment beyond specific 

model structures, supporting the discovery of links between data. The philosophy 

consists of Multiview-based, Similarity-based, Dependency-based and Commonality-

based principles, explaining the rationale of the complementation between knowledges 

from different data and thus answering the question of “why can be fused”. 

Digital World Physical World

Multimodal
Data

Problems

Digital World

Multimodal 
Data

Tasks Problems

Digital World Physical World

Multimodal 
Data

Problems

C) Solving problems in the physical world using data from both worlds

B) Solving problems in digital world using data from both worlds

A) Solving digital problems using data in the digital world

Tasks

Tasks



Fusing Cross-Domain Knowledge from Multimodal Data 
 

 

ACM Trans. Intelligent systems and technologies, Vol. x, No. x, Article 1, Pub. date: August 2025. 

• In the Models Layer, we represent existing data fusion algorithms with two knowledge 

fusion paradigms, which is comprised of a precise fusion and a coarse fusion, based 

on their fundamental mechanisms for processing data. The two paradigms do not only 

explain the evolution of data fusion algorithms but also unveil the intrinsic differences 

between existing methods, supporting the design of a specific AI model for fusing 

multimodal data, i.e. answering the question of “how can be fused”.  

• In the Data Layer, the proposed data transformation component turns data of different 

structures, resolutions, scales and distributions into a consistent representation that can 

be fed into an AI model. It consists of data preprocessing, precise transformation and 

coarse transformation, generating three data transformation approaches based on 

intrinsic properties of data modality and features of application scenarios. 

2. PROBLEM DEFINITION 

2.1 Preliminaries and Examples 

This section formally defines a few terms, consisting of domains, data sources, data 

modalities, knowledge from data, AI tasks and the relationship among them, as illustrated 

in Figure 4.  

Domains and data sources: A domain is an area of interest, such as transportation, 

environmental protection, public safety, economy, climate, and entertainment. The scope 

of a domain depends on the granularities of an interest, which is usually represented by a 

taxonomy. For example, the domain of environmental protection can be comprised of 

several sub-domains, including air quality, water quality, noise and soils, etc. A domain 

contains many data sources, which could be a sensor, a device, an instrument, a system or 

a person, constantly generating data.  

 

Figure 4 Illustrations of key concepts in cross-domain multimodal data fusion 
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Data modalities: The data generated by a source could have different modalities 

represented by different forms of data structures. In the real world, there are three 

categories of data modalities, consisting of unstructured data, spatio-temporal (ST) data 

and structured data. Images, audios, videos and texts are unstructured data. Representatives 

of ST data consist of point-based ST data, like IOT (Internet of Things) data, and network-

based ST data, e.g. traffic networks and trajectories etc. Typical examples of structed data 

are digital spreadsheets generated in E-Government services.  

Knowledge: Each piece of data contains a certain knowledge about the source and 

domain in which it was created. The knowledge has a diversity of representations denoted 

by hand-crafted features or model-generated vectors and matrices in latent spaces.  

AI Tasks: Knowledges from different data can be fused into an AI model to complete 

a task, which is designed to solve a problem, based on the understanding of the problem 

and the relating domains. We call such kind of tasks an AI task in this paper.  

Cross-domain knowledge fusion uses knowledge extracted from datasets generated 

in different domains (including a target domain and other domains) to solve a problem in 

the target domain. These datasets could have the same or different data modalities.  

Multimodal data fusion denotes fusing knowledge from multiple datasets of different 

modalities to complete a task. These datasets could be generated a single or different 

domains. This is different from cross-modality knowledge fusion, which aims to transfer 

knowledge from one data modality (e.g. texts) to another data modality (e.g. videos).  

Physical world problems: In such a problem, a significant portion of datasets are 

collected in the physical world and are computed to understand the physical environment 

and natural processes. Computing results may be further applied to physical objects, such 

as sensors, devices, instruments, vehicles and buildings, for facilitating the operation of the 

real world. 

Now, we can see (single vs cross) domains, (unimodal vs multimodal vs cross-modal) 

data, and (virtual and physical) worlds are three different dimensions defining a 

knowledge fusing task. Figure 4 presents a concrete example of cross-domain knowledge 

fusion from multimodal data in the physical world.  

In the transportation domain (𝓐), to manage a city’s traffic, we need to create a few 

data sources, e.g. 𝑆1 , 𝑆2 , 𝑆3  and 𝑆4  depicted in Figure 4, from which a bunch of data 

(𝐷1~𝐷6) can be collected. Here, 𝑆1 is a set of cameras sensing traffic conditions on roads. 

𝑆1 generates images capturing traffic violations of vehicle (𝐷1), videos about traffic density 

(𝐷2), and audios recording traffic noises (𝐷3). 𝑆2 is a set of loop detectors deployed on 

roads, counting the number of vehicles traversing a road. It constantly creates point-based 

ST data (𝐷4). 𝑆3 is a taxi dispatching system, which stores the GPS trajectories of taxicabs 

traveling in a city (𝐷5). 𝑆4 is a system recording the penalties of traffic violation that have 

been processed by police officers (𝐷6). The knowledge 𝐾1 extracted from 𝐷1, 𝐾2 from 𝐷2, 

𝐾3 from 𝐷3, 𝐾4 from 𝐷4, 𝐾5 from 𝐷5, and 𝐾6 from 𝐷6 are then fused in an AI model to 

complete task 𝑇1, which aims to predict the impact area of a given traffic accident. This is 

a case of multimodal data fusion in a single domain. 

      In the environmental protection domain (𝓑), to tackle the challenges of air pollution, 

we deploy four data sources, consisting of 𝑆5, 𝑆6, 𝑆7 and 𝑆8. 𝑆5 is a set of cameras that 

monitor the pollution situation of a territory, generating video clips denoted as 𝐷7. 𝑆6 is a 

system that records penalties of pollution violation issued by governments, generating 

descriptions of violation (𝐷8) and records of penalty (𝐷11). There are two other data sources 

𝑆7 and 𝑆8, which are two sets of sensors detecting the concentration of air pollutants in a 

city and the pollution emission from major factories respectively. They generate a sequence 

of point-based sensory readings, denoted as 𝐷9  and 𝐷10 . The knowledge, including 𝐾7 
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from 𝐷7, 𝐾8 from 𝐷8, 𝐾9 from 𝐷9 etc., is then fed into a model to complete task 𝑇2, which 

aims to forecast the air quality over the next 48 hours. 

Both 𝑇1 and 𝑇2 belong to multimodal data fusion in a single domain, though different 

sources are employed. Now, in the domain of urban planning (𝓒), there is another task 𝑇3, 

which attempts to infer the function of a region. As a region is usually a mixture of different 

functions, such as business, entertainment, education and residential areas, which is an 

accumulation of human behaviors and urban development over a long period of time [58], 

it needs to fuse multiple data of different modalities. However, the needed data is neither 

fully available nor enough in the urban planning domain, which could only have 

householder survey data like 𝐷𝑛. It is impossible to deploy new devices and systems for 

collecting necessary data either. The most effective approach to solving this problem is to 

leverage the related data that has already been generated in domain 𝓐 and 𝓑.  

Based on the domain knowledge of 𝓐, we know datasets 𝐷1~𝐷5 imply traffic patterns 

of an area. Furthermore, 𝐷5 contains knowledge about human mobility patterns in a region, 

as GPS trajectory data of taxicabs has pickup and drop-off points of each trip. Based on 

the domain knowledge of 𝓑 , we know datasets 𝐷9  and 𝐷10  could denote the natural 

environment of a place. According to the domain knowledge of 𝓒, traffic patterns and 

nature environment of a region are key observations of the region’s underlying functions 

[59]. As a result, we can use the knowledge from 𝐷5 in domain 𝓐, the knowledge from 𝐷9 

and 𝐷10 in domain 𝓑 and the knowledge from 𝐷11 to complete task 𝑇3 in domain 𝓒. This 

is a typical scenario of cross-domain knowledge fusion from multimodal data. 

Table 1 shows the differences of different knowledge fusion problems in Domains, 

Data and Worlds dimensions. The last row defines the problem discussed in this paper. 

Table 1 Key differences of knowledge fusion problems 

 
Domains Data Worlds 

Single 

domain 

Cross-

domain 
Unimodal Multimodal 

Cross-

modality 
Virtual Physical 

Fig. 1 A) √   √  √  

Fig. 1 B) √    √ √  

Fig. 1 C) and D) √   √   √ 

𝑇1,𝑇2 in Fig. 4  √   √   √ 

𝑇3 in Fig. 4 ours  √  √   √ 

2.2 Differences between this Topic and Existing Research 

Though there are already quite a few articles studying the problem of multimodal data 

fusion, the differences between our paper and these articles are three-folds: 

1) Different scopes of the problem: Existing research fuse multimodal data generated 

in a single domain, while we fuse multimodal data across multiple different domains where 

diversities and modalities of data are more complex to handle. Besides videos, images, 

audios and texts, there are a diversity of spatio-temporal data, such as sensory data, POIs 

and road networks, and structured data like records from online forms that could be fused 

in a task. Moreover, the goals of data fusion include not only completing virtual tasks, like 

text and video generation, self-programming and gamming, in digital worlds but also 

solving real-world problems, such as traffic controls, disaster responses and autonomous 

driving in the physical environment. There are more challenges posed to data fusion in the 

physical world. On the one hand, all most all tasks are facing data scarcity problem, as the 

cost of data collection in the physical world is much higher than the virtual world. Thus, 
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they may not be simply handled by deep-learning-based methods which learns complex 

relationships between data through hidden layer-based black boxes given abundant data. 

One the other hand, the problems we need to solve in the physical world usually require a 

more accurate, efficient and reliable AI models than in the virtual one.  

2) Different focuses of the problem: Existing research focus on specific data 

processing techniques that transform multimodal datasets into different representations 

which can be further aggregated in a machine learning model, supposing these datasets are 

correlated and complementary to each other. That is, they do not necessarily study “what 

to fuse” and “why can be fused”. However, in this paper, before stepping into a model, we 

focus on first selecting multimodal data relating to a problem from different sources. This 

calls for rich knowledge of domains and deep insights into the data generated in these 

domains. Second, we find the meaningful and specific links between selected data, which 

calls for a systematical and deep understanding of knowledge alignment. These two parts 

are rarely mentioned in existing articles.   

3) Different depths of the problem: Existing research study multimodal data fusion 

techniques given a specific category of AI models, such as tensor decomposition [22] and 

deep neural networks [15][63][64]. They usually exploit how different datasets can be 

properly placed in the specific structure of a model so that the knowledge from these 

datasets can be aggregated to complete a task. For example, early fusion, intermediate 

fusion and later fusion are three approaches in deep-learning-based methods [63]. Similarly, 

Gao et al. [15] classify these methods into three categories, consisting of signal-level, 

feature-level and decision-level fusions. Alternatively, Zhang et al [64] divide data fusion 

methods into different categories, e.g. encoder-decoder-based methods, attention-based 

methods, graph neural network-based methods, and Generative neural network-based 

methods, based on model structures. However, in the real world, an AI model will not 

automatically jump out when we face a problem. Given taxonomies proposed in those 

survey papers, professionals are still puzzled in selecting a proper model for their problems. 

Model selection is an important step towards solving a problem, depending on features of 

the problem, functions of models, and the underlying principle of knowledge alignment. 

The principle is beyond model structures and across models, applicable to different 

scenarios and domains for selecting models, designing model structures and guiding the 

way from data integration to knowledge fusion. These require a much deeper thinking 

towards the nature of knowledge alignment than just connecting data in a given model. 

3. MOTIVATIONS OF THE RESEARCH 

3.1 Benefits of Cross-Domain Knowledge Fusion 

The benefits of cross-domain knowledge fusion are two folds at least.  

One is reducing the effort for data collection tremendously. We always find that data 

in a domain is not enough to solve a given problem because the physical world is very 

complex. It is neither feasible nor sustainable to deploy new resources for every and each 

AI task. Without an efficient approach to obtaining necessary data, the cost of data 

collection in an AI task will become the bottleneck preventing AI from being widely used. 

The other is to improve the capability of solving a problem, achieving a more accurate 

forecast, an earlier detection of anomalies, and a more reliable estimation of distributions.  

• More accurate forecasts: Extensive studies have shown that cross-domain 

knowledge fusion offers a more accurate forecast than using multimodal data from a 

single domain in many scenarios. For example, by combing air quality data, 

meteorological data, traffic data and points of interest (POIs) data from different 
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domains, we can predict future air quality with a much higher accuracy than only using 

air quality and meteorological data from the environment protection domain [56][70].  

• Earlier detection of anomalies: Cross-domain knowledge fusion can detect 

sophisticated anomalies that cannot be recognized by using a single dataset or 

multimodal data from a single domain, or detect an anomaly much earlier than solely 

using one dataset. As introduced in paper [72], an unusual event has just happened at 

location 𝑟1, affecting its surrounding locations. As a result, the traffic flow entering 𝑟1 

from its surrounding locations increases 10 percent. Meanwhile, social media posts 

and bike rental flow around these locations change slightly. The deviation in each 

single dataset against its common pattern is not significant enough to be considered 

anomalous. However, when putting them together, we might be able to identify the 

anomaly, as the three datasets barely change simultaneously to that extent.  

• More reliable estimations: Cross-domain knowledge fusion can lead to a more 

reliable estimation on the distribution of data, particularly when the data is very sparse 

[42][50]. For instance, [42] aims to estimate the distribution of traffic volume on each 

and every road segment throughout a city based on GPS trajectories of taxicabs. 

However, the flow of taxicabs is only a small portion of the entire traffic flow in a city. 

In addition, the trajectories generated by taxicabs are sparsely distributed on road 

segments, i.e. there is few trajectory data on many road segments. Thus, it is very hard 

to obtain a reliable estimation on road-segment-level traffic volume if we only use taxi 

trajectories. By fusing the knowledge about structures of a road segment (such as 

lengths, widths, indegrees, outdegrees, and the number of lanes) and POIs around the 

segment into the traffic volume estimation through a coupled matrix factorization 

model, we can tackle the challenges posed by the data sparsity and therefore achieve 

a much better performance beyond the methods solely using traffic data. 

3.2 Challenges of Cross-Domain Multimodal Data Fusion 

The main challenges of this problem include the following three aspects. Other challenges, 

such as data missing, data redundancy, and data noise, that also exist in single domain data 

fusion are not discussed here again. 

1) Selecting useful data: It is a challenge to select useful datasets from disparate data 

sources to solve a given problem, depending on a thorough understanding of the problem 

and a deep insight into the data from other domains. This calls for rich knowledge about 

the domain of problem and the domains where data is leveraged.  

2) Designing links between data: Even if relevant datasets are selected from different 

domains, it is still challenging to design the specific links (or interactions) between selected 

data. This needs to bridge the gap between two parts. One is not only the knowledge about 

the factors causing a problem but also a deep understanding of the interactions between 

these factors. The other is AI expertise, particularly the fundamental principle of 

knowledge alignment that is beyond and across different AI models. Additionally, the 

conflict between data scarcity and the complexity of problems in the physical world 

compromises the capability of automated machine learning techniques [55], which was 

designed to automatically learn relationships between data and labels. It remains a 

challenge in finding a balance between totally taking human out of learning applications 

and a fully hand-crafted AI design. 

3) Representation learning: Different datasets have different forms of representation, 

distributions, scales and resolutions. It is a challenge to turn them into sharable and 

computable representations while preserving their original knowledge. Advanced encoding 

(or embedding) techniques are still missing for spatio-temporal data and structured data. 
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The representation learning algorithms may be different for different data modalities in 

different categories of application scenarios.  

The first two challenges are rarely discussed in existing research, and the second one 

is the most challenging part as it needs to bridge the gap between domain knowledge and 

AI expertise. Most existing articles focus on tackling the third challenge. Additionally, 

most of them apply the representation learning techniques, which were originally designed 

for unstructured data, to structure data and spatio-temporal data. As a results, some key 

properties, such as spatial distances and hierarchies, are not preserved in the encoded 

results, therefore losing important knowledge after the representation learning. 

4. GENERAL FRAMEWORK OF CROSS-DOMAIN KNOWLEDGE FUSION 

Figure 5 presents the framework of the methodology for cross-domain knowledge fusion, 

which is comprised of four layers: Domains, Bridges, Models and Data Layers. The 

Domains Layer selects useful datasets for solving a problem, tackling the first challenge 

mentioned in Section 3.2. It answers the question of what to fuse. The Links Layer 

identifies the links between data for knowledge alignment, tackling the second challenge 

of cross-domain knowledge fusion. It explains why data can be fused. The Models Layer 

designs specific model structures to complete a task. The Data Layer transforms 

multimodal data into consistent representations, tackling the third challenges mentioned in 

Section 3.2. The Models and Data Layers answer the question of how to fuse. 

 

Figure 5 Framework of the methodology for cross-domain multimodal data fusion 

4.1 Procedures 

In the Domains Layer:  

① Analyze the root causes of the problem based on related domain knowledge.  

② Digging out main factors contributing to the root causes.  

③ Exploring relevant data containing the knowledge about these factors.  

④ Searching for data sources and domains generating these datasets.  

In the Links Layer:  

⑤ Identifying the interactions between causal factors. This step conceives coarse 

interactions between causal factors based on domain knowledge, as it is difficult to obtain 

precise interactions.  
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⑥ Design the links between data based on three inputs: the interactions between causal 

factors, the knowledge data contains, and the philosophy of knowledge alignment. The 

third one is the foundation deriving data fusion models, consisting of the Multiview-based, 

similarity-based, dependency-based, and commonality-based knowledge alignment 

principles (introduced in Section 5). 

In the Models & Data Layers: 

⑦ Design an AI model with a specific structure and a set of variables, based on the 

links between selected data, the paradigm of knowledge fusion, and AI expertise. 

There are two paradigms for knowledge fusion, consisting of precise fusion and coarse 

fusion, which will be introduced in Section 6. The coarse knowledge fusion paradigm only 

designs a high-level structure of an AI model and learns details from data during training 

processes. 

⑧ Design the data transformation algorithms for selected data based on the links 

between data and the key properties of different data modalities. Different data 

modalities should have different transformation algorithms. In the meantime, the data of 

the same modality could have different data transformation algorithms in different 

application scenarios.  

⑨ The structures, variables and data transformation algorithms are coupled to 

construct final AI models. Sometimes, the data transformation algorithms, e.g. deep 

encoders, is a part of a model’s structure. The AI models are trained based on selected data 

using machine learning algorithms.  

⑩ Apply the designed AI models to the defined task to solve the problem. 

Figure 6 presents a summary of the above-mentioned procedures. It highlights three 

key components: the philosophy of knowledge alignment, knowledge fusion paradigms, 

and data transformation, which will be detailed in Section 5, 6 and 7 respectively.  Most 

existing research focuses on the last two steps in this framework, i.e. design model 

structures and transform data as input, while ignoring the previous steps. In addition, 

existing data transformation methods mainly focus on processing unstructured data using 

embedding algorithms and encoders, lack of a systematic framework that can handle all 

types of data modalities for downstream knowledge fusion tasks in the physical world.  

 
Figure 6 Summary of cross-domain knowledge fusion from multimodal data 
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More specifically, the philosophy of knowledge alignment has four main principles, 

each of which can enable a variety of AI models. There are two knowledge alignment 

paradigms, in which data are fused based on different processing and connecting 

mechanisms. The data transformation step depends on three main components, consisting 

of data preprocessing, precise transformation and coarse transformation, generating three 

data transformation approaches: precise, coarse, and hybrid transformation.  

4.2 Example of Data Selection 

As the first four procedures are application-driven and domain-related, we elaborate on 

them with a running example shown in Figure 7, which infers the real-time and fine-grained 

air quality throughout an entire city given the air quality readings from existing stations.  

① Analyze the root causes: The air pollution in location A is mainly caused by three 

aspects: pollution emissions from location A and A’s surrounding places, dispersion 

conditions of location A and A’s surrounding places, and the secondary chemical reaction 

between different air pollutants in location A.  

② Digging out main factors: Traffic conditions is a key factor contributing to traffic 

emission which is an important source of air pollution. Land uses (e.g. the density and 

height of buildings) and meteorology in a location contribute to the location’s dispersion 

conditions. Meteorology is also a factor contributing to the secondary chemical reaction 

between air pollutants. 

③ Exploring relevant data: POIs and road network data contain the knowledge about a 

location’s land use as well as traffic conditions. GPS trajectories of vehicles travelling in a 

location contain the knowledge about traffic conditions in the location. Wind speeds, 

humidity and weather of a location denote its meteorological conditions.  

④ Searching for data sources: we can obtain GPS trajectories of taxicabs, which is a 

portion of traffic flow on roads, from taxi dispatching companies. POIs and network data 

can be obtained from a map service provider in transportation domain. Meteorological data 

can be collected from a diversity of sensors through the information system deployed in 

the bureau of meteorology. 

 

Figure 7 Example of selecting relevant data for a given problem 
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This section presents the philosophy of knowledge alignment, which reveals the nature of 

complementation between knowledge from different data, regardless structures of AI 

models. The philosophy provides four knowledge alignment principles, as illustrated in 

Figure 8, supporting the design of cross-domain knowledge fusion models. Each principle 

can foster a wide range of AI model structures, including both deep learning-based models 

like Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM), Graph 

Convolutional Networks (GCN) and generative pre-trained Transformer (GPT), and non-

deep learning-based models, such as coupled matrix factorization, co-training and 

probabilistic graphical models.  

There are four labels in Figure 8, denoting data, latent representations, objects and 

domains respectively. Here, we only use two objects and two domains for a simple 

illustration. The numbers can be greater than 2 in the philosophy of knowledge alignment. 

 

Figure 8 Four principles of knowledge alignment 

5.1 Multiview-Based Principle  

5.1.1 Rationale of the Principle 

This principle finds different views on the same object in disparate domains to form a better 

understanding of the object. 

As depicted in Figure 8 A), object A contains knowledge denoted by a latent 

representation 𝑅𝐴, which is not explicitly observable. What we can obtain is data 𝐷𝐴𝑋 and 

𝐷𝐴𝑌  object A generates in domain X and Y respectively. Alternatively, we can say X and 

Y are two different views observing object A. 𝐷𝐴𝑋 and 𝐷𝐴𝑌 can be regarded as records of 

observation, collectively deriving a better representation of 𝑅𝐴 than solely based on each 

of them. The more disparate X and Y are, the less redundant information about object A 

the two views offer, and therefore the better representation of 𝑅𝐴 is forged. Then, we can 

solve a problem based on 𝑅𝐴. 

More specifically, as illustrated in Figure 9 A), 𝐿𝑋 and 𝐿𝑌 are latent representations 

contributed by 𝐷𝐴𝑋 and 𝐷𝐴𝑌  respectively. They are a part of 𝑅𝐴, collectively forming the 

knowledge about object A. If the two views are distinct, 𝐿𝑋 and 𝐿𝑌 are disjoint. Thus, the 

knowledge they collectively contribute (𝐿𝑋𝑌 = 𝐿𝑋 ∪ 𝐿𝑌) is maximized, i.e. 𝐿𝑋𝑌 = 𝐿𝑋 + 𝐿𝑌, 

as shown in the left most case of Figure 9 D). If the two views share something in common, 

𝐿𝑋𝑌 = 𝐿𝑋 + 𝐿𝑌 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝, as depicted in Figure 9 B). The overlap between two views 

contributes redundant knowledge about object A, which can be derived from either 𝐷𝐴𝑋 or 

𝐷𝐴𝑌 . In the extreme case shown in Figure 9 C), if two views are totally overlapped or one 

view belongs to the other, the knowledge they contribute to 𝑅𝐴 is the least. In other words, 

the other view is useless, 𝐿𝑋𝑌 = max⁡(𝐿𝑋, 𝐿𝑌). 
In the real world, for example, we can evaluate a student based on their examination 

results (𝐷𝐴𝑋) and sports performances (𝐷𝐴𝑌 ), or even the recommendations from their 
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community neighbors (𝐷𝐴𝑍 ). To understand a product, we can check its specification, 

online user evaluations, and sales situations. Those are disparate views observing a student 

or a product. Thus, the data generated in these domains can be fused to better understand 

the student and product. 

 

Figure 9 Performance of knowledge fusion depending on the distinction of the views 

5.1.2 Implementations and Examples 

The Multiview-based knowledge alignment has enabled many kinds of models [51], 

including Co-training [7], Multi-kernel learning [17], subspace learning [10], and deep 

Multiview learning [53], for a diversity of applications, such as inferring real-time air and 

water qualities [27][68], forecasting future air quality [70], and predicting flow of crowds 

in a city [45].  

For example, [70] proposes to forecast the air quality of a monitoring station over next 

48 hours based on the Multiview learning principle, combining four components consisting 

of a temporal predictor, a spatial predictor, a dynamic aggregator and an inflection 

predictor, as depicted in Figure 10. The temporal predictor predicts the air quality of a 

station in terms of the data about the station, such as local meteorology and AQIs, using a 

linear regression model. Instead, the spatial predictor predicts a station’s future air quality 

considering its spatial neighbors’ data, using a shallow neural network. The results of the 

two predictors are dynamically combined by the aggregator using a regression tree. Under 

some unique circumstances, the inflection predictor will be invoked to generate a ∆𝐴𝑄𝐼 
which will be appended to the output of the aggregator. In this example, temporal, spatial 

and inflection predictors are three views on future air quality, implemented by three 

different machine learning models. The reason of using these models is data scarcity. Given 

sufficient data, these predictors can also be implemented by deep Multiview models. 

 

Figure 10 Forecasting air quality using Multiview-based knowledge alignment principle 
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5.2 Similarity-Based Principle 

5.2.1 Rationale of the Principle 

This principle exploits the similarity between objects of the same category and then 

ensembles their data from different domains to complement the knowledge between each 

other.  

As illustrated in Figure 8 B), let’s start with a single domain scenario, where two objects 

(A and B) have generated data in domain 𝑋. In many cases, 𝐷𝐴𝑋 and 𝐷𝐵𝑋  would be very 

sparse, thus are hard to form an accurate representation of 𝑅𝐴  and 𝑅𝐵  respectively. As 

object A and B belong to the same category, the similarity between them is meaningful and 

therefore can be used to complement 𝑅𝐴 and 𝑅𝐵 between each other. More specifically, the 

knowledge from 𝐷𝐴𝑋 can complement 𝑅𝐵 through the similarity between object A and B. 

vice versa.  

Essentially, this is the original rational of collaborative filtering with which we can 

infer people’s interests in a product they have never seen based on the products they have 

already bought. The general idea is people who have bought same products in history 

would have similar interests which would lead to similar shopping behaviors in the future. 

Thus, we can place different people’s purchasing records on different products in a matrix 

where a row denotes an individual and a column stands for a product. An entry in this 

matrix represents the times that a specific individual has bought a specific product. By 

inferring missing entries based on existing records, we can know how likely an individual 

would purchase an unseen product. This problem can be solved by using a matrix 

factorization algorithm.  

Now, we can extend the scenario to two (or even more) domains. As the data from a 

single domain is very sparse in many cases, the estimated similarity between two objects 

is usually inaccurate, therefore reducing the capability of complementing knowledge 

between each other. Now, in domain 𝑌, there are 𝐷𝐴𝑌  and 𝐷𝐵𝑌 generated by object A and 

B respectively. Combining (𝐷𝐴𝑋 , 𝐷𝐵𝑋 ) with (𝐷𝐴𝑌 , 𝐷𝐵𝑌 ) will enhance the capability of 

solving the problem in domain A for two reasons. First, 𝐷𝐴𝑌  and 𝐷𝐵𝑌  provide 

complementary observations for learning a better 𝑅𝐴  and 𝑅𝐵  respectively. Second, the 

combination improves the accuracy in estimating the similarity between A and B. The 

denser 𝐷𝐴𝑌  and 𝐷𝐵𝑌 are, the richer knowledge they convey to 𝑅𝐴 and 𝑅𝐵 is, and the more 

accurate the estimated similarity is. However, 𝐷𝐴𝑋 and 𝐷𝐴𝑌  cannot be simply concatenated, 

because they have different semantic meanings, representations and resolutions; Neither 

do 𝐷𝐵𝑋 and 𝐷𝐵𝑌. So, they should be placed in different sub-models, such as, matrices or 

encoders, before aggregated in a sophisticated model. 

5.2.2 Implementations and Examples 

The similarity-based knowledge alignment principle has motivated a diversity of models, 

e.g. coupled matrix factorization or tensor decomposition [43][74], and contrastive 

learning [11].  

Coupled matrix factorization and tensor decomposition decompose several matrices 

and/or tensors (some of them usually are sparse) with shared dimensions together with a 

constraint of minimizing the recovery errors of non-empty entries, finding a low-

dimensional latent representation for each dimension of these matrices or tensors. Then, 

empty entries of sparse matrices and tensors can be filled with an estimated value based on 

the productions of those decomposed latent representations. Using these methods, a branch 

of research works have been done to estimate travel time of a path [50], calculate pollution 
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emission of vehicles on roads [42], diagnose urban noise [69], and conduct location-

activity recommendations [74].  

For example, Wang et al. [50] employ the similarity-based principle to infer travel time 

on roads, regarding a road segment as an object 𝐴. The travel speed of vehicles on a road 

(𝐷𝐴𝑋) and the road’s physical properties (𝐷𝐴𝑌 ) are multimodal data from two different 

domains (𝑋 and 𝑌). The general idea is similar road segments would have a similar travel 

speed in the same time interval. However, data denoting travel speeds is very sparse as 

there are many road segments without being traversed by any sensor-equipped vehicles, 

e.g. taxicabs with a GPS sensor. That is, the similarity between two road segments 𝐴 and 

𝐵 solely based on data in domain 𝑋 is hard to accurate. Thus, 𝐷𝐴𝑌 , including a road’s 

structure and surrounding POIs, from another domain 𝑌 is used collectively with 𝐷𝐴𝑋 to 

better estimate the similarity between two road segments, and hence improving the 

inference of travel speed on roads. More specifically, in the implementation, we can deposit 

𝐷𝐴𝑋 in a matrix 𝑀𝑠 where a row denotes a road segment and a column stands for a time 

interval. An entry is the travel speed of vehicles on a particular road segment in a particular 

time interval. In the meantime, 𝐷𝐴𝑌  can be placed in another matrix 𝑀𝑝 , where a row 

denotes a road segment and a column stands for a kind of physical feature like number of 

lanes; an entry stores the value of a particular feature pertaining to a road segment. 𝑀𝑠 is 

very spare with many empty entries while 𝑀𝑝 is quite dense. By factorizing 𝑀𝑠 and 𝑀𝑝 

together, we can fill empty entries in 𝑀𝑠 more accurately than solely based on 𝐷𝐴𝑋. 

Contrastive learning generates latent representations, which maximize their similarity 

within the same class and minimize it between different classes, for instances in a dataset, 

by constructing positive and negative examples from the original data. Contrastive learning 

is a type of self-supervised learning where a model is trained on a task using the data itself 

to generate supervisory signals rather than relying on externally-provided labels. A series 

of research [24][28][57] incorporates contrastive learning into graph neural networks to 

forecast the dynamics of spatio-temporal graphs, e.g. traffic flows on road networks. 

5.3 Dependence-Based Principle  

5.3.1 Rationale of the Principle 

This principle utilizes the dependency between different objects’ properties to reinforce the 

knowledge between each other.  

As illustrated in Figure 8 C), A and B are two objects of different category without a 

meaningful similarity between them. However, the data, 𝐷𝐴𝑋  and 𝐷𝐵𝑌 , they generate in 

domain X and Y respectively may have a probabilistic dependency, revealing the 

interactions between 𝑅𝐴 and 𝑅𝐵. The dependency provides contexts and constraints for a 

more accurate estimation of 𝑅𝐴  and 𝑅𝐵 , which leads to a better performance of task 

completion. The stronger dependency between two objects, the richer knowledge one can 

complement to the other.  

5.3.2 Implementations and Examples 

This principle has been widely used to design structures of probabilistic graphical models, 

like Conditional Random Field (CRF) and Latent Dirichlet Allocation (LDA) [6], and deep 

neural networks including self-attention mechanisms [48][56][61], for travel speed 

estimation on roads [42], crowd flow prediction in urban regions [19][61], air quality 

forecast [56], functional zone inference in a city [58], and geo-sensory data prediction [25]. 

For example, vehicles’ travel speed on a road depends on the road’s properties, such as the 

number of lanes, speed limits, indegrees and outdegrees. The speed also depends on that 
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of adjacent road segments and weather conditions. By placing these factors into a 

probabilistic graphical model, Shang et al. [42] infer the traffic volume on each and every 

road segment in a city given a few road segments with observations of travel speed.  

As shown in Figure 11 A), Yi et al. [56] designed a deep neural network-based model 

to forecast air quality, after sufficient air quality data has been accumulated. Weather 

forecast, current meteorology, concentrations of other air pollutants, and time of day are 

regarded as implicit factors impacting air quality. Thus, they are thrown into separate 

fusion nets with AQIs to generate individual predictions which are then merged by a hidden 

layer of neural network to derive a final result.  

 

Figure 11 Examples of models using dependency-based knowledge alignment principle 

As illustrated in Figure 11 B), using the dependency-based knowledge alignment 

principle, Zhang et al. [61] propose the first deep learning model dedicatedly designed for 

spatio-temporal data to predict the flow of crowds in a city. The in-and-out crowd flows in 

a region depend on the flow in the region over recent times, near histories and distant 

histories, because crowd flows as a kind of spatio-temporal data have temporal closeness, 

periods and trends properties. In addition, they also depend on flows of their spatial 

neighbors as well as weather conditions and major events. Considering these factors, the 

proposed spatio-temporal residual networks only select the data from a couple of time 

frames, such as recent hours, the same time of yesterday and that of last week, to predict 

the flow at future times, whereas other frames are neglected to reduce the complexity of 

model structure. The data of recent times, near histories and distant histories are fed into 

three sub-networks to model the temporal closeness, periods and trends properties 

respectively. In each sub-network, a residual convolutional neural network is constructed 

to capture the spatial correlation between flows of regions with different distances in 

between. The impact of weather conditions and major events are finally appended to the 

aggregated fusion results of the three sub-networks through a full connect network. 

5.4 Commonality-Based Principle 

5.4.1 Rationale of the Principle 

This principle exploits the commonality shared by different domains, leveraging the data 

generated by an object in one domain to enrich the knowledge of data the object creates in 

other domains.  

As illustrated in Figure 8 D), object A’s latent representation 𝑅𝐴 generates two finer-

grained representations 𝑅𝐴𝑋  and 𝑅𝐴𝑌  which denote A’s knowledge in domain 𝑋  and 𝑌 
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respectively. 𝐷𝐴𝑋  and 𝐷𝐴𝑌  are observations of 𝑅𝐴𝑋  and 𝑅𝐴𝑌 . As domain 𝑋  and 𝑌  share 

something in common, 𝑅𝐴𝑋 and 𝑅𝐴𝑌 would share some common knowledge derived from 

𝑅𝐴. Particularly, when 𝐷𝐴𝑋 is abundant while 𝐷𝐴𝑌  is sparse, we can leverage 𝑅𝐴𝑋 learned 

from 𝐷𝐴𝑋  to consolidate 𝑅𝐴  and thus enhance the capability of generating 𝑅𝐴𝑌 , which 

would further improve the accuracy of generating 𝐷𝐴𝑌 . That is, their knowledge can 

complement each other through collectively constructing a better 𝑅𝐴 . The more 

commonality two domains share is, the richer knowledge can be transferred between the 

two domains. 

More specifically, as depicted in Figure 12 A), 𝐿𝑋𝑌 = 𝐿𝑋 ∩ 𝐿𝑌  denotes the 

commonality shared by domain X and Y. 𝐿𝑋 is a part of 𝑅𝐴𝑋, derived from 𝐿𝑋𝑌. Likewise, 

𝐿𝑌  is a part of 𝑅𝐴𝑌 , derived from 𝐿𝑋𝑌  too. The more domain 𝑋  and 𝑌 share, the richer 

knowledge 𝐿𝑋𝑌  contains, which is represented by a larger size of purple block. On the 

contrary, the less domain 𝑋 and 𝑌 share, the smaller 𝐿𝑋𝑌 is, as depicted in Figure 12 C). As 

𝐿𝑋𝑌  is a bridge connecting 𝐿𝑋  and 𝐿𝑌 , a larger 𝐿𝑋𝑌  can provide a wider bandwidth for 

transferring knowledge from 𝐷𝐴𝑋 to 𝐷𝐴𝑌 .  

 

Figure 12 Performance of knowledge fusion depending on commonalities between domains 

For example, if we want to provide travel recommendations to users, we need to collect 

enough data 𝐷𝐴𝑌  from travel agents or websites. However, 𝐷𝐴𝑌 is relatively hard to obtain 

as many people do not have a record in these data sources. Fortunately, we may have 

people’s records 𝐷𝐴𝑋 in purchasing or browsing books in online websites. There are some 

commonalities between an individual’s interests in books and tourist attractions. Hence, 

we can leverage 𝐷𝐴𝑋 to improve the prediction on 𝐷𝐴𝑌.  

The commonality-based principle can be further extended to two and more objects of 

different categories. For example, as illustrated in Figure 12 D), object 𝐴 and 𝐵 are two 

different categories of animals whose similarity is not meaningful. However, the two tasks 

classifying them into a category have a certain commonality, e.g. people would recognize 

an animal by checking some key features like their heads, ears, eyes, furs, arms and legs. 

𝑅𝐴𝑋  can be regarded as meta knowledge of the task abstracted from 𝐷𝐴𝑋 . Though the 

features of 𝐴 and 𝐵 are different, the common knowledge 𝐿𝑋𝑌 shared by the two tasks can 

convey from one (with rich data) to another (with a few data), i.e. from 𝑅𝐴𝑋 to 𝑅𝐵𝑌. Then, 

the task classifying 𝐵 is enhanced with external prior knowledge from 𝑅𝐴𝑋. 

5.4.2 Implementations and Examples 

Based on the commonality-based knowledge alignment principle, a series of research 

themes, such as multitask learning (MLT) [4][9], transfer learning [35], and meta learning 

[16][20], have been carried out in the past decade. Sometimes, MLT is regarded as a kind 

of transfer learning [35]. Some researchers also take transfer learning as a special case of 

meta-learning [23]. 
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Multitask learning learns a problem together with other related problems at the same 

time, using a shared representation. This often leads to a better model for the main task, 

because it allows the learner to use the commonality among the tasks. MTL works well if 

these tasks have some commonality and are slightly under sampled. For example, Liu et al. 

[27] forecast the water quality of multiple stations simultaneously using a multitask 

learning framework, obtaining a 15% improvement on predictive accuracy over a stand-

alone prediction on individual stations. More examples can be found in our previous review 

on cross-domain data fusion [65]. 

Transfer learning consists of two categories: transductive and inductive learning 

according to whether label data are available in source and target domains. Transductive 

learning handles cases where the task is the same but the source and target domain are 

different. For instance, Yang et al. [54] propose heterogenous transfer learning to improve 

image classification using text classification, based on the semantic commonality between 

images and its surrounding texts. Inductive learning handles cases where tasks are different 

in source and target domains. For example, Zhang et al. [62] simultaneously predict in-

flow in a region and the transition between regions using a multitask learning-based deep 

neural networks.  

Meta learning aims to improve adaptation through transferring generic and 

accumulated knowledge (meta-data) from prior experiences with few data points to adapt 

to new tasks quickly without requiring training from scratch [16][20]. Meta-learning is 

most commonly known as “learning to learn”. The example shown in Figure 12 D) can 

also be regarded as a representative of meta learning. Using meta learning algorithms, a 

diversity of research has been done for predicting purchasing orders during shopping 

festivals [37], traffic flow in fine-grained locations throughout a city [36], and service time 

of delivery tasks [41]. 

5.5 Differences and Connections between these Principles 

1) Differences between Multiview-based and commonality-based Principles: Though 

Figure 9 and 12 look similar, the differences between them are two folds. First, the 

Multiview-based principle aggregates 𝐿𝑋  and 𝐿𝑌  to collectively form a better 𝑅𝐴 , i.e., 

𝐿𝑋𝑌 = 𝐿𝑋 ∪ 𝐿𝑌, while the latter principle leverages the commonality between two domains 

to transfer knowledge from one domain to another, i.e. 𝐿𝑋𝑌 = 𝐿𝑋 ∩ 𝐿𝑌. Thus, the more 

correlated two domains are, the less useful the Multiview-based principle is while the more 

effective the commonality-based one is. Second, the former principle solves a problem 

based on 𝑅𝐴  whereas the latter uses 𝑅𝐴𝑌  or 𝑅𝐵𝑌  to complete a task. 𝐿𝑋𝑌  is a bridge 

delivering complementary knowledge from 𝑅𝐴𝑋 to 𝑅𝐴𝑌. 

2) Differences between similarity-based and commonality-based Principles: The 

differences consist of two parts. First, the former principle utilizes the similarity between 

two objects of the same category, while the latter employs the commonality between the 

observations of an object in two (related but different) domains or that between two (related 

but different) tasks involving multiple objects of different categories. Second, the former 

principle improves the latent representation of the target object (𝑅𝐴), whereas the latter 

enhances the latent representation of an object in the target domain (𝑅𝐴𝑌) or other object’ 

representation in a target task (𝑅𝐵𝑌). 

3) Connections between these principles: the four knowledge alignment principles can 

be employed together in an AI task.  

• Combing the commonality-based with Multiview-based principles: Liu et al. [27] infer 

urban water quality by combining multitask learning with a Multiview model. Pan et 

al.[36] integrate meta learning with Multiview learning to predict urban traffic.  
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• Combing the dependency-based with Multiview-based principles: Liang et al. [25] 

incorporate attention mechanisms in a Multiview learning model to predict geo-

sensory data. Zhang et al. [62] predict flow of crowds in a region, using major events 

and weather conditions as impacting factors in a Multiview-based deep learning model.  

• Combing the similarity-based with Multiview-based principles: Liu et al. [28] consider 

spatial and temporal views in a contrastive learning framework to predict the dynamics 

of spatio-temporal graphs. Similar idea is also employed in [38] to forecast urban flows. 

• Combining the dependency-based with commonality-based principles: Ruan et al. [41] 

employ a transformer-based representation layer (encoding delivery circumstances) in 

a meta learning framework to predict the service time of delivery tasks. 

6. KNOWLEDGE FUSION PARADIGMS 

After determining the links between multimodal data, we can start designing specific AI 

models based on two knowledge fusion paradigms, which is comprised of a precise fusion 

and a coarse fusion.  

6.1 Definitions and Differences between the two Paradigms 

The precision knowledge fusion paradigm first extracts precise knowledge from 

each piece of data as accurately as possible through precise data transformation approaches, 

such as map-matching [29], image segmentations and entity extractions. These precise 

knowledges are then explicitly connected based on the previously determined links between 

data in some interpretable AI models like knowledge graphs, collaborative filtering, and 

probabilistic graphic models.  

The coarse knowledge fusion paradigm first generates intermediate representations 

of multimodal data, which can be regarded as coarse and preliminary knowledge, using 

some coarse data transformation methods, such as text embedding and image encoders. 

The coarse representations of knowledge are then implicitly connected, most likely in a 

deep learning model, based on the links between data. 

Differences: The differences between the two knowledge fusion paradigms are two 

folds. One is the precise knowledge versus coarse knowledge in the first step. The other is 

the explicit connections versus implicit connections in the second step.  

Note that the two knowledge paradigms are not specific models, though we use a 

coupled matrix factorization and a deep neural network for demonstrating the idea in the 

following sections. Both paradigms are useful and should be employed properly based on 

application scenarios. It is vital to select a right knowledge fusion paradigm before 

designing specific model structures. 

The precise fusion paradigm should be employed when the following three 

requirements are satisfied: 1) we have a relatively clear understanding of the problem; 2) 

the data is insufficient; and 3) the extraction of preliminary knowledge is accurate enough. 

On the contrary, if the understanding of a problem is vague, the data is rich, and the 

extraction of the preliminary knowledge is hard to be accurate, the coarse knowledge fusion 

paradigm should be considered.  

Connections: The two knowledge fusion paradigms can be combined to complete 

complex tasks. For example, combing knowledge graphs and large language models to 

answer complicated questions [14], like “how many people with an age from 20 to 30 have 

visited art museums in downtown areas”, or “how many senior people live alone in 

community A”. Particularly, with advanced methods that can automatically build accurate 

and large-scale knowledge graph [71], we are more likely to harness the two fusion 

paradigms in solving one problem. 



Fusing Cross-Domain Knowledge from Multimodal Data 
 

 

ACM Trans. Intelligent systems and technologies, Vol. x, No. x, Article 1, Pub. date: August 2025. 

Examples: Figure 13 presents an example of the two knowledge fusion paradigms. 

There are three categories of datasets which have different data modalities and look 

disparate. Once we know the three categories of datasets were generated by the same 

person in different data sources, we can find anchor points for aligning the knowledge from 

these datasets. More specifically, the three datasets can be regarded as different 

observations on a fact, i.e. a person 𝑃  lives in a location 𝐿  (denoted as 𝑃 𝑙𝑖𝑣𝑒𝑠⁡𝑖𝑛 𝐿), 

through three different views. For example, because living in location 𝐿, person 𝑃 fills her 

home address in an online form, generating structured data in E-government services, 

depicted as the left most dataset in Figure 13. Because 𝑃 lives in 𝐿, her vehicle generates a 

few GPS trajectories starting from and ending at the location, shown as the middle dataset. 

For the same reason, 𝑃 would share photos and tweets about the environment and buildings 

around 𝐿, generating the rightmost dataset. In other words, the three datasets are different 

presentations of the same knowledge (𝑃 𝑙𝑖𝑣𝑒𝑠⁡𝑖𝑛 𝐿), and thus can be fused to achieve the 

same goal, e.g. to better understand 𝑃 and 𝐿 as well the link between them.  

 

Figure 13 Example of two knowledge fusion paradigms 

In reality, there are a lot of people generating these three categories of datasets in many 

locations (not limited to their homes, e.g. 𝑃 𝑣𝑖𝑠𝑖𝑡𝑠 𝐿) in the three data sources. However, 

they may have insufficient data in each data source. For instance, some people may not fill 

in accurate addresses, or did not record many trajectories, or post few tweets about these 

locations. At this moment, we need to fuse these three datasets if wanting to have a better 

prediction on the link between an individual and a location. The strength of a link could 

have different semantic meanings in different applications, e.g. how likely an individual 

would be interested in a location, or the probability that an individual could have visited a 

location, or the likelihood of a person working at or living in a location. Those are ordinary 

tasks in location recommendations, human behavior recognitions, and user profiling. 

6.2 Using the Precise Knowledge Fusion Paradigm 

Regarding the example presented in Figure 13, we first extract precise knowledge about 

people and locations from the three datasets through precise data transformation 
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approaches, which will be detailed in Section 7. For example, we can build links between 

an individual and locations by matching the address they have filled in the first data source 

against addresses in a POI database. If matched, a link is built between the individual and 

a specific POI. In the meantime, we usually detect stay points [73] from an individual’s 

trajectories and then match these stay points against a POI database based on their GPS 

coordinates. Typically, the closest POI to a stay point is selected as the exact location where 

the individual has stayed. Then, a link is created between the individual and the POI. In 

addition, we need to extract names of POI entities from the individual’s tweets or recognize 

specific POIs based on photos posted by the individual.  

Then, we can construct an explicit knowledge graph between people and locations, 

where a link could denote “lives in”, “visits”, or “works at” etc., as shown in the bottom 

left part of Figure 13. Likewise, the links between individuals and organizations can be 

explicitly built and then added into the knowledge graph, where a link could represent 

“works for” or “managing” etc. After that, we can use classification algorithms proposed 

for heterogenous information networks [46] to label the category of each link or even 

discover underlying links between different nodes using link prediction algorithms.  

For instance, as shown in Figure 14, we can explicitly represent the links between users 

and locations in matrix 𝑀𝑥 where each entry 𝑒𝑝𝑙 denotes the strength of the link between 

user 𝑝 and location 𝑙. Values of 𝑒𝑝𝑙 can be precisely obtained from the three categories of 

datasets through the approaches mentioned above. 𝑀𝑥  is intrinsically sparse because 

people would have not visited many locations. Additionally, these datasets are just a small 

sample of people’s real life.  

 

Figure 14 Example of precise knowledge fusion paradigm 

As a result, we can deposit each user’s profile from the structured dataset into matrix 

𝑀𝑢, where each entry 𝑒𝑢𝑓 denotes user 𝑢’s feature in profile field 𝑓. In the meantime, we 

can build matrix 𝑀𝑙 from the unstructured dataset, where entry 𝑒𝑙𝑡 stands for the presence 

of tag 𝑡 generated by users on location 𝑙. 𝑀𝑢 and 𝑀𝑥 share the user dimension, and 𝑀𝑙 and 

𝑀𝑥 share the location dimension. As matrices 𝑀𝑢 and 𝑀𝑙 are much denser than 𝑀𝑥, the 

knowledge they contained about users and locations can be transferred to 𝑀𝑥 for inferring 

its missing entries by using a coupled matrix factorization.  

6.3 Using the Coarse Knowledge Fusion Paradigm 

As we can see in Figure 13, the leftmost dataset, i.e. the structured data, has the least size 

for each piece of data while containing the most precise knowledge. The rightmost dataset, 

i.e. the unstructured data, has the largest size for each piece of data whereas containing the 

least precise knowledge. This calls for sophisticated algorithms for extractions and 

recognitions, which are indeed hard to be precise. Thus, the coarse knowledge fusion 

paradigm is proposed, first turning multimodal data into intermediate representations using 

different kinds of encoders or embedding algorithms. 
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Following the example shown in Figure 13, Figure 15 presents an example of the coarse 

knowledge fusion paradigm, where four different encoders (depicted as four different 

colors) are designed to generate intermediate representations for an individual’s images, 

texts, trajectories and spreadsheet data are generated respectively. The intermediate 

representations of the four datasets are then aggregated through some hidden layers, 

generating a latent representation about the individual’s behaviors and interests. After 

processed by another set of hidden layers, the latent representation will be turned into a 

vector of output where each entry could denote the linking strength between the individual 

and a specific location. Sometimes, the ideal of Mixture-of-Experts (MoE) [34] can be 

employed in this paradigm, activating different components (or experts) in a large model 

according to inputs to obtain a more accurate result with less resources. 

Not that what Figure 15 presents is just an example of the coarse knowledge fusion 

paradigm. If a model first turns multimodal data into latent representations and then fuse 

them in a deep neural network-like model, this model falls in the coarse knowledge fusion 

paradigm. Models discussed in [15][44][63][64] can be regarded as instances of this 

paradigm. Once professionals have gone through the Domain and Link layers shown in 

Figure 5, i.e. knowing “what to fuse” and “why can be fused”, they can select a knowledge 

fusion paradigm and then design specific model structures, which might be very different 

from the one shown in Figure 15, for solving their own problems. The specific model 

structures are not the focus of this paper, as there are many models proposed in literature.  

 

Figure 15 Example of coarse knowledge fusion 
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in Figure 16 A), road networks and POIs have different data structures, represented by a 

spatial graph and spatial points respectively. Without a data transformation process, no AI 

models can take them as an input directly and simultaneously, let alone fusing them with 

texts and images. In addition, the original representation to align multimodal data is usually 

very sparse, e.g. using a matrix to represent different networks or using a one-hop vector 
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to denote different terms, resulting in a high order space for a data instance. This does not 

only increase computational loads but also cause troubles to training processes. 

2) Data with significantly different scales would result in a vulnerable training process. 

For instance, as depicted in Figure 16 B), features extracted from two trajectories with 

tremendously different lengths will have extremely large or small values. Some instances 

with extreme values may be treated as outliers and thus be ignored by some AI models. 

Alternatively, if there are many extreme values in the input, a training process may be faced 

with exploding gradient or vanishing gradient problems if an artificial neural network-

based model is selected.  

3) Data with different resolutions requires different structures of AI models, such as the 

size of input and numbers of hidden layers. As shown in Figure 16 C), for example, two 

moving objects traversing the same route will generate two different trajectories if using 

different spatial and temporal sampling rates, e.g. recording a GPS point every 5 seconds 

and 10 minutes respectively. That is, they have different spatio-temporal resolutions (a.k.a. 

granularities), containing different numbers of records, which call for different numbers of 

units in an LSTM. Additionally, even if the two trajectories have the same resolution, the 

GPS points they contain may not be comparable either for two reasons. One is GPS 

coordinates are recorded as double variables, which cannot go through an equal judgement 

operation. Second, the two moving objects passing the same location would generate 

different GPS coordinates because of positioning errors or being positioned by different 

satellites. Thus, it is hard to through these two trajectories into the same AI model.  

 
Figure 16 Differences between multimodal data 

4) Data with different distributions on class labels or spatial and temporal spaces would 

mislead the inference of an AI model. For example, an image corpus has significantly more 

photos about a class label than others. Likewise, a trajectory corpus may have GPS traces 

generated by different transportation modes, such as cycling, driving and walking. The 

number of instances varies in different modes. These imbalanced distributions will lead to 

redundant training data for some classes, dominating the training process and 

compromising the overall effectiveness of the model.  

As a result, before sending selected multimodal data into a designed AI model, we need 

to transform them into a consistent representation, tackling the challenges caused by 

different structures, scales, resolutions and distributions.   

7.2 Key Factors for Designing Data Transformation 

The data transformation process depends on two main factors.  

One is the intrinsic properties of data modality, which denotes the nature of datasets to 

be processed regardless of applications. For example, as shown in Figure 17, spatio-

temporal data has unique properties consisting of spatial distances, spatial hierarchies, 

temporal closeness, temporal period patterns and temporal trends. When used correctly, 

these properties cannot only reduce the complexity of model structures but also improve 

the accuracy of an AI model. Thus, the data transformation algorithms should preserve 
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these properties in the generated representations. In other words, different data modalities 

should have different representations generated by different transforming algorithms. 

The other is the links between multimodal data, depending on problems, domains and 

the philosophy of knowledge alignment (as shown in procedure ⑥). This can be regarded 

as data’s adaptions to applications. That is, data of the same modality could have different 

representations generated by different transforming algorithms in different categories of 

application scenarios. 

 
Figure 17 Unique properties of spatio-temporal data 

7.3 Architecture of Data Transformation 

As shown in Figure 18, the architecture of data transformation is comprised of three 

components: data preprocessing, precise transformation and coarse transformation, 

generating three data transformation approaches (①, ② and ③). The data preprocessing 

is a foundation, tackling the challenges posed by different data distributions, scales and 

resolutions. The latter two transformation components mainly solve the problem caused by 

different data structures and data sparsity. Combined with the data preprocessing, two 

transformation components formulate a precise transformation approach (denoted as ①) 

and a coarse transformation approach (denoted as ②) respectively. Sometimes, a coarse 

transformation process can be performed after a precise transformation, generating a hybrid 

approach illustrated as ③. The selection of data transformation approaches depends on the 

features of applications and nature of data modalities. 

 

Figure 18 Framework of data transformation 
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7.3.1 Data Preprocessing 

This component consists of data sampling and segmentation methods.  

1) Data sampling methods select a necessary number of instances from an original 

dataset for a uniform distribution of class labels, tackling the challenges posed by different 

data distributions. It scales down the size of a dataset by skipping redundant data, and thus 

reduces computational workloads. These sampling methods also convert instances of 

different resolutions into comparable ones for a consistent computing process, solving the 

problem caused by different data resolutions. For example, sampling photos of different 

resolutions down to a consistent pixel level, or sampling trajectories of different recording 

frequencies up or down to the same temporal granularity.  

2) Segmentation methods partition data into different fragments so that each fragment 

has a same level of scale or fragments of interest can be identified. As shown in Figure 19 

A), when processing documents with a very long length, we typically partition them into 

some portions of a similar length. A trajectory can be divided into uniform segments by 

spatial distances 𝑑 or temporal span 𝑡, as illustrated in Figure 19 B). After that, trajectories 

with different spatial and temporal scales can be processed together. As shown in Figure 

19 C), to better analyze important objects, e.g. people or building, we need to segment 

areas of interest from the background of an image using image segmentation methods.  

 
Figure 19 Examples of data segmentation 

7.3.2 Precise Data Transformation 

This component is comprised of a detection and mapping methods varying in data 

modalities. 

1) The detection methods extract key elements from multimodal data and then uses these 

elements to represent the original data.  

For example, as illustrated in Figure 20 A)-①, we can detect stay points, like 𝑠1 and 𝑠2, 

where a user has stayed for a while, from a given trajectory 𝑇𝑟𝑎. Then, this trajectory can 

be represented by a sequence of stay points, e.g. 𝑠1 → 𝑠2 , which carry more semantic 

meanings, such as shopping, having a dinner, or hanging out at some places, than original 

GPS points. Further, using spatial clustering algorithms, we can detect clusters of stay 

points, e.g. 𝐶1  and 𝐶2  shown in Figure 20 A)-②, from multiple trajectories. Then, 

trajectory 𝑇𝑟𝑎 can be represented by 𝐶1 → 𝐶2. Additionally, as illustrated in Figure 20 A)-

③, a hierarchy of clusters can be detected from many people’s stay points by using 

hierarchical clustering algorithms. A corpus of stay points is iteratively divided into sub-

clusters, forming a spatial hierarchy where the scope of a parent cluster is the aggregation 

of its children’s spatial areas. 

Likewise, we can detect entity names from a given document based on a dictionary, as 

depicted in Figure 20 C), using entity extraction algorithms. Then, this document can be 

represented by a bag of words with different term frequencies (TF) and inverse document 
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frequencies (IDF). Similarly, as shown in Figure 20 D), we can detect people’s faces from 

a given image and then match these faces against a facial database for entity recognition. 

 

Figure 20 Examples of detection and mapping 

2) The mapping methods project data onto a shared framework or matching them against 

a common foundation, generating a simplified and consistent data representation.  

For example, as illustrated in Figure 20 B)-①, to identify the exact location that a user has 

been to, we can map their stay points 𝑠1 and 𝑠2 to the nearest POI (𝑝1 and 𝑝2). Based on 

the same POI database, different people’s location histories become comparable. As 

depicted in Figure 20 B)-②, we can map a vehicle’s trajectory onto a given road network 

using map matching algorithms, representing the trajectory as a sequence of road segment 

IDs, i.e. 𝑟1 → 𝑟2 → 𝑟3 . After that, we can compute traffic conditions on road segments 

based on trajectories mapped to them. As shown in Figure 20 B)-③, we can project 

trajectories of different moving objects, such as people, vehicles and animals, into uniform 

grids or regions with irregular shapes, counting in-and-out flows in each unit. We can also 

build links between two units if there are trajectories traversing them consecutively, 

constructing a transitional graph between locations. 

As depicted in Figure 20 C), we can map entity names detected from different documents 

to the corresponding entity label, e.g. 𝑒1 and 𝑒2, and extract entity relations, like 𝑙1 and 𝑙2, 

using some classification methods. Likewise, we can match faces detected from different 

images against each other to find the same person across images. 

7.3.3 Coarse Data Transformation 

Instead of detecting exact knowledge and matching them precisely, the coarse data 

transformation employs embedding algorithms or encoders to turn data into an intermediate 

representation which carries implicitly compressed knowledge.  
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-------------- -------- --------------

----------------------------------- ----
---------- ---------- --------------
--------------------- -----------------

----------- ------------ -------------
-------- ----- ---- --------- ------
-------------- -------- --------------

------------------------------------- ----
---------- ---------- -----------------
--------------------- -------------------

C) Detection and mapping in texts

② Mapping to road networks ③ Mapping to grids or Irregular regions① Mapping to POIs

D) Detection and mapping in images

A) Examples of detection in spatio-temporal data

① Detect stay points ③ Detect hierarchical clusters② Detect clusters of stay points

s1 s2
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1) Extensive studies on representation learning techniques have been done for 

compressing unstructured data into a dense and fixed length representation, which is further 

used in downstream applications. For example, different types of methods, including topic 

models, word embedding algorithms and autoencoders etc., were proposed for estimating 

continuous representations of texts.  

• Topic models, like Latent Semantic Analysis (LSA) and LDA [6], represent a text 

document with a distribution of topics, each of which is further represented by a 

distribution of words. 

• Autoencoders [3] consist of an encoder and a decoder, generating a compressed 

representation of the input data based on the bottleneck layer. The encoder compresses 

the input data into a lower dimensional representation, while the decoder reconstructs 

the original input from the compressed representation.  

• Word embedding algorithms [2], such as neural network language models (NNLM) 

[5], word2vector [33] and BERT [13], learn a representation for each word using deep 

learning or matrix factorization, capturing the semantic relations between words.  

In the meantime, different image encoders have been proposed to generate a latent space 

representation for tasks of image classifications, clustering and retrievals. Traditional PCA 

and recent convolutional autoencoders [31] are employed as an unsupervised 

representation learning model for images.  

2) Quite a few research works employed embedding algorithms or encoders mentioned 

above to learn representations for spatio-temporal data [21][49]. Though those models 

reduce the computational complexity for downstream applications to some extent, the 

unique spatial and temporal properties introduced in Figure 17 are not well preserved in 

the latent representations. For example, as illustrated in Figure 17 A), location 𝑠1 has a 

short distance to 𝑠2 than 𝑠3 in the geospatial space, i.e. 𝑑1 < 𝑑2. However, the distance 

between their latent representations generated by existing embedding models does not hold 

this, let along, the triangle inequality 𝑑2 − 𝑑1 < 𝑑3 < 𝑑1 + 𝑑2 . That is, the spatial 

closeness and triangle inequality properties do not hold any longer in the latent 

representation space. This significantly reduces the key information contained in original 

spatio-temporal data, compromising the capabilities of downstream models and 

applications. Dedicated embedding algorithms or encoders, preserving unique spatial and 

temporal properties, should be designed for spatio-temporal data. 

3) Regarding structured data, a wide range of network embedding algorithms [12] have 

been proposed to represent each node in a network with a lower-dimensional and dense 

vector that preserves the topology of network and/or content of the node. Networks can 

denote the social relations between friends, information relays between authors and 

biological interactions between molecules. However, there is lack of representation 

learning algorithms for embedding the subtitles in an online form, such as name, age, 

agenda, and address, which will be field names in databases. Those subtitles are an 

underlying graph of entities and their attributes rather than a sequence of words. 
 

8. FUTURE DIRECTIONS 

1) Broaden and deepen the philosophy of knowledge alignment: There may be more 

knowledge alignment principles except for the four proposed in this paper. In addition, it 

deserves a deep dive into each knowledge alignment principle, evaluating the strength of 

identified links between data.  

2) The combination of the two knowledge fusion paradigms: As the two paradigms have 

their own advantages and disadvantages, combining them in an AI task may lead to a higher 
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performance in some scenarios. For example, [14] has shown that combing large language 

models with knowledge graphs achieves a better result in linguistic tasks. Designing 

intelligent methods that can automatically generate precise knowledge fusion models is 

also an important research topic. For instance, [71] proposes a human-machine 

collaborative methods for generating precise knowledge graphs automatically. 

3) Dedicated data transformation models for different data modalities: It is imperative 

to exploit the unique properties of each data modality, which should be well preserved in 

their latent representations. Thus, dedicated data encoders should be created for different 

data modalities and different categories of applications, capturing both unique properties 

of data and features of applications. 

4) Improving the efficiency and robustness of knowledge fusion: As problems we are 

going to solve in the physical world usually request immediate responses with a high 

accuracy all day, the efficiency and robustness of knowledge fusion model matter. These 

issues could be handled from the perspective of data transformation, e.g. incorporating data 

compression and representation learning techniques that can significantly scaled down the 

size of input while maintaining the knowledge of row data.  

5) A deeper theoretical analysis on this topic: There are still some questions remain open, 

needing a deeper theoretical analysis. For example, under what conditions does a cross-

domain multimodal data fusion paradigm outperform single-domain models. Currently, we 

only have a general insight, i.e. when data in a target domain is insufficient to reflect the 

root causes of the problem to be solve, additional datasets from other domain should be 

included in a multimodal data fusion model.  Or, can we derive generalization bounds or 

domain adaptation guarantees for the knowledge alignment principles. 

9. CONCLUSION 

In this paper, we exploit cross-domain multimodal data fusion systematically. A four-layer 

framework, containing ten procedures and three key components, is proposed for designing 

knowledge fusion methods to solve real-world problems. The first four procedures select 

useful datasets from a diversity of sources and domains, while the rest of procedures 

analyze and process data gradually. The first key component is the philosophy of 

knowledge alignment which reveals the nature of complementation between knowledge 

from different data regardless structures of AI models. With this component, we can 

discover the underlying links between disparate data and thus answer the question of “why 

can be fused”. The second key component is two paradigms of knowledge fusion, 

consisting of a precise fusion and a coarse fusion, which unveils the intrinsic differences 

between existing methods. The first and second components guide the direction of model 

selection. The third one is data transformation which turns data of different structures, 

resolutions, scales and distributions into a consistent representation. The second and third 

components lead to specific model structures, answering the question of “how to fuse”.  

This paper is neither a research paper proposing a specifical algorithm to solve a 

particular problem nor a review on a broad range of research works that have been done. 

This paper points out a new research theme on data fusion from a new perspective (i.e. 

cross-domain, multimodality, and solving problems in the physical world). The paper 

paves the way towards this direction with a systematic framework, detailed procedures and 

concrete methodologies. This paper will not only facilitate problem solving in applications 

interacting with both digital and physical worlds but also inspire continued innovations in 

AI related research.   
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